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2. Current and Anticipated Results

The ultimate objective of our research is to provide algorithms, and,
by using experimental digital computer programs which implement the con-
straint method for three dimensional analysis, to demonstrate the effec-
tiveness of the method in three dimensions. Since the approaches to be )
used in deriving these algorithms are based on similar approaches for two
dimensional analyses, part of the grant period has been spent in complet-
ing the formulation of algorithms in two dimensions so as to have a firm
foundation for the more complex three dimensional work. Also in response
to a suggestion by Dr. V. B. Venkayya of the Air Force Flight Dynamics
Laboratory at Wright-Patterson AF3, the plate bending element of the Con-
straiat Method is being developed furcther. Results in the first three
areas described below are for two dimensional problems in linear stress
analysis; resul:ts in the fourth area are for three dimensional linear
stress analysis. 7

2.1 C° Disvlacement Fields (plane elastici:zv)

2.1.1 Hierarchical Elements and Precomputaed Arravs

It has been shown previously by ochers that elemental arravs may be
efficiently generated through the use of "precomputed" arrays - - that is
arrays which are computed once, "stored on permanent file, and then reused
in all subsequent applications of the program. The new work done by the
principal investigator and his collaborators has two objectives: the first
is to show how the hierarchal C° elements (described in 1.2) for a quadratic
functicnal may be formulated using precomputed arrays thus yieldiag a fi-
nite element technique which is especially suited to problems with local
rapid variation of the function to be approximated. In particular, formulas
for two-dimensional (hierarchal) element arrays for arbitrary polynomial
order are derived, based on precomputed arrays. The second objective is to
apply the combined approach of hierarchal elements and precomputed arrays to
decide if a computed result has "converged'". A common practice in finite
element analysis is to solve a problem several times using successively
required meshes {.e. to apply the procedure for h-convergence. If suc-
cessive analyses agree then it is usually assumed that the finite element
approxination is accurate. This procedure can be computationally expensive
when several highly refined meshes are used. An altermative procedure is

to use p-convergence, which, as pointed out in 1.1, has a faster rate of




convergence to the true displacements. The computational effectiveness of
the p-convergence procedure is demonstrated numerically using hierarchal
elements and precomputed arrays.

Detailed formulas are given for calculation of stiffness matrices and
for calculation of polynomial coefficients from nodal variables. Hierar-
chal nodal variablas are presented together with some of the favorable con-
sequences of using hierarchal nodal variables. Computation times for
stifiness matrices are given in terms of equivalent time units (e.t.u.) for
different methods. It has been demonstrated in ([11] that the comstraint
zethod allows nany nore degrees of freedom than other methods do, for the
same computer cost.

2.1.2 Singularicy Functions used in Linear Elastic Fracture Mechanics

Poor computational afficiency has generally been observed when emplov-
ing conventional finite elements near a crack top. Theraefore, in [17], the
bchaviir of a ractional type singularity function which represents an order
of r T tvpe stress siagularity has been investigated, when used in con~
junction with hierarchical C°® elements, in an effort to improve efficiencr.
. An {ntermal node of the form

L1 L, L3
9\1-1' sz Lz) - (Lq + L.)3/s
- 3 -
i
is an approximation in triangular coordinates to an ¢ 2 type stress singu-

larity at the vertix Ll = 1. Using techniques similar to those developed dy
us in [5], it is possible to intagrate derivatives of the singularity fune-
tion 3 over triangles, explicitly, and then to employ precomputed arravs to
computa alemental stiffness matrices. The p~convergent procedura can then
be applied to determine the strain energy U, the strain energy release rate
G and crack opening displacements.

To determine the effact of adding the singularity function $ to a
polynomial basis we have taken the edge cracked panel shown in figure 6.
3ecause of symmetry only one quarter of the panel is modeled with the three
different triangulations shown in figure 6. The finite element solution
i3 obtained for each of the triangulations first with only polynomials in
the displacement field, and then with the addition of the singularity func-
tion in elaments meeting at thae crack top. The results are plocted in




figure 6 and figure 7 and are given in detail in Table 2 and Table 3. It

is evident that there is an improvement in the estimates of the strain
energy U and the strain energy release rate G but that this improvement is
not appreciable compared to the results already obtained by increasing the
polynomial order p. Thus, thc mode of p-convergence appears to be more im-
portant in achieving accuracy than the addition of a singularity function ;
to the basis.

We have also considered the case of a centrally cracked panel showm
in figure 8 modeled with five elements in one quarter of the panel. The
crack opening displacement (COD) and stresses are computed with the singu-
larizy function included in the approximating displacement fiald and the
results are shown in table 4. In table 4,5 is the COD obtained by polymo-
aial apporoxizacion above, 3% is the COD obtained by including a singu-

laricy function and ¢ is a measure of component defined as

N
§ =3

€ = x 100 .

Iz {3 clear from tabla & that inclusion of the singularity function in the
p-convergent procedure leads to substantial izprovement in the displacement
near the crack.

More details and other cases which have been studied are presented in -
(17]. In all cases the case of the constraint method in the mode of p
converzence leads to major computational advantages.

2.2 Couvled C® and Cl Displacement Fields

In this work the results of Xratochvil et al in (18] are zenerali:zed
2o problems with three independent displacement fields. An essential aspect
of this approach is to transform a triangular element T in the x-y plane

{ato a standard triangle T with vertices at the origin and at a unit dis-

tance along the horizontal and vertical axes. Such a transformation is

shown on the next page where  and n represent ccordinates in the plame of

the standard triangle and X and ; are local coordinates for the element

——ley '

with the first vertex of the element coincidiag with cthe origian. The other
two vertices and also the three edges are numbered in counter-clockwise

order as shown.




/\ Trangformacion to Standard tTiangle

(ol"

(1,00 €

xI

The justification for using the standard triangle is that integrations and

matrix inversions are performed with respect to the standard triangle. Thus

they need be dene only once and the results are stored and Ehen used in

all Zfuture applications of the program. Computation of the element stiffness

natrix is thus reduced to computing a linear combination of a small number
of precomputed matrizes followed by pre- and post-multiplication by block

diagonal matrices. The number of precomputad matrices which must be stored

are considerably reduced by choosing hierarchal nodal variables. Further
details are given in [12].

2.3 Cl Displacement Fields (olate bending probleams) :

It was suggestad by Dr. V., 3. Venkayya (of the Analysis and Optimi-
zation Group, Structures Division, Air Force Flight Dynamics Laboratorv,
Wright-Patterson Air Force 3ase) in a latter dated 12 December 1975 that
further development of plate bending elements would be useful ian order to
realize the full potential of the comstraint method. Accordingly, a
sophisticated plate bending element, incorporating a complete psﬁ order
polynomial with p > 5 and corrective rational functions, has been formu-
lated and is now being programmed and testad, We now describe some of
this work.

It is well known (see [19], for example) that exactly conforming
(even at vertices) Cl displacement fields cannot be formed merely by freely
assembling finite elements. There are certain additional comstraint equa-
tions which must be satisfied at vertices. The simplest form of these




constraint equations has been given by Peano in (4], where a specially
devised assembly procedure is presented which automatically eanforces the
constraint equations. An alternative method for enforcing exact conformity
when using displacement fields of arbitrary polynomial order p is by sup-
plementing psh order polynomials with newly comstructed corrective ratiomal
functions. This destroys the analytic character of the approximation at
the vertices but permits free assembly of elements without enforcing con-
straints [4]. An algorithm has been developed for a Cl (exactly) conform~
ing triangular element which contains complete polyncmials of order p > 5
and corrective ratiomal functioms. A typical element of order p = 5 to-
gether with nodal variables is shown below. 3

3
s
1
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Hierarchic Quintic ¢~ Element

The quintic Cl element has 24 independent nodal variables. The shape

functions for these nodal variables are given in Table 5. The shape func-
tions for second order tangential-normal derivatives are rational functioms.
It is important to observe that although rational functions are used in

the basis, all terms which appear in the elemental stiffness matrix can be
integrated explicitly without recourse to numerical quadrature. This was
proved in (5]. An algorithm based on a hierarchical family of Cl alements
using corrective rational functions has been prograrmed and is now being

tested on numerical examples. We now give one such example.
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2.3.1 An Example: A Simply Supported Square Plate under Uniform Loading

Results obtained by using the hierarchical quintic C‘L element are
compared with those obtained by Cowper in [20], by Caramanlian et al ia [21]
and by Tsai in [22]. Two different types of triangulation are shown in
Figure 9: the Q-arrangement and the P-arrangement. In Table 6 the
results for ceantral deflection, central bending moments and for the strain
energy are compared for different elemental arrangements and for different
Cl elements. It is seen that for the Q-arrangement the strain energy ob-
tained by using the Constraint Method is an order of magnitude more accurate
than that cbtained by Cowper, and for the p-arrangement it is two orders
of magnitude more accurate. This is comsistent with the order of magnitude
improvements that have resulted in many problems by using the comnstraint
method.

2.4, Hierarchical Families of Complete Conforming Solid Zlements of
Various Shapes and Arbitrarv QOrder

In (4] a table of canonical basis functions for a Criaﬁgular (two
dizensional) element was presented, using natural coordinates. This table
has been generalized to include a canonical basis for a tetrahedral (three
dimensional) hierarchic family. Using this table shape functions are gene-
rated for tetrahedral C° elements and their corresponding nodal variables.
Table 7 gives the nodal variables and shape functions for the first four
hierarchic Tetrahedral C° elements.

A hierarchic family of rectangular C° elements has been developed and
this family is used to gemerate a hierarchic family of C° brick elements
of arbitrary polynomial order. 3y using a combination of the hierarchic
triangular and rectangular families, we have also comstructed a hierarchic
family of triangular prismatic elements. These prismatic elements, which
have also have arbitrary polynomial order, can be made to join continuously
to tetranedral elements, so that pointed prismatic geometries can now be

easily approximated (see the figure on the next page).
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2.5 Pavcers for Puplication in Jourmals and Presentation at Conferences

The various aspects of the work described in 2.1 - 2.4 are in dif-
ferent stages of development. Listed below are papers either already ac-
ceptad for publication or in preparation, and papers already presented or
to be presented at confarences.

Published Papers:

1). '"Hierarchal Finite Elements and Precomputed Arrays', by
Mark P. Rossow and I. Norman Katz, (to appear in Int. J.
for Num. Method in Engr.).

2). '"Nodal Variables for Conforming Finite Elements of Arbitrary
Polynomial Order", by I. Norman Katz and Mark P. Rossow, (to
appear in Computers and Machematics, with Applications).

3). "A Hierarchic Family of Cémplece, Conforming Cl Triangular
Elements, for Plate Bending', by I. Norman Katz and Barna
A. Szabo, (in preparaticn).

4). '"Hierarchic Families of Complete Conforming Solid Finite
Elements of Various Shapes'", by I. Norman Katz, (in prepa-
ration).

5). '"P-convergent Finite Element Approximations in Linear Elastic

Fracture Mechanics", by Anil K. Mehta (doctoral dissertation)
Department of Civil Engineering, Washington University (1973).
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Presented Papers:

6).

7).

8).

ks

10).

“Hierarchical Approximation iz Finite Element ‘nalysis", by

I. Norman Xatz, Intermational Symposium on Iniovative Numerical
Analysis in Applied Engineering Science, Versiilles, France,
May 23 - 27, 1977.

"Efficient Generation of Hierarchal Finite Elements Through the
Use of Precomputed Arrays', by M. P. Rossow and I. N. Katz,
Second Annual ASCE Engineering Mechanics Division Specialcy
Confarence, North Carolina State University, Raleigh, NC

May 23 - 25, 1977.

'tl Triangular Elements of Arbitrary Polynomial Order Containing
Corrective Rational Functioms", by I. Norman Xatz, SIAM 1977
National Meeting, Philadelphia, PA, June 13 - 15, 1977.

"Hierarchical Complete Conforming Tetrahedral Elements of
Arbitrary Polynomial Order", by I. Norman Xatz, presented at
SIAM 1977 Fall Meeting, Albequergque, NM, October 31 - November
> A 1 7 i o

"A Hierarchical Family of Complete Conforming Prismatic Finite
Elements of Arbitrary Polyncmial Order", by I. Norman Katz to
be presentad at SIAM 1978 National Meeting, Madison, WI, May
24-26, 1978.
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(17]
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(19]

(20]

(21]

(22]
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K. C. Chen, "High Precision Finite Elements for Plane Elastic Problems",
D. Sc. Dissertation, Department of Civil Engineering, Washington
University, St. Louis, Missouri.

Rossow, M. P., Chen, K. C. and Lee, J. C., "Computer Implementation of
the Constraint Method'", Computers and Structures, Vol. 6, pp. 203-209
(1976).

Rossow, M. P., "Efficient CO Finite Element of Simply Supported Plates
of Pciymomial Shape', to appear in J. Applied Mechanics.

R. F. Hartung and R. E. Ball, "A Comparison of Several Computer Solu-
tions to Three Structural Shell Analysis Programs', Air Force Flight
Dynamics Laboratory, Wright-Patterson Air Force Base, AFFDL-TR~15,
Technical Report (1973)

Anil K. Menta, "P-convergent Finite Element Approximations in Linear
Elastic Fracture Mechanics', Doctoral Dissertation, Department of Civil
Engineering, Washington University, St. Louis, Missouri (1978)

J. Kratochvil, A. Zenisek, and M. Zlamal, "A Simple Algorithm for the
Stiffness Matrix of a Triangular Plate Bending Element", Int. J. Num.
Methods in Engr. Vol. 3, 1971 pp. 533-563.

P. C. Zienkiewicz, The Finite Element Method in Engineering Science
McGraw-Hill, London 1971 p. 176.

G. R. Cowper, E. Kosko. G. M. Lindberg, and M. D. Olsen, "A High Pre-
cision Plate Bending Element', NRC NAE, Aero Report LR 514 National
Research Council of Canada (Dec. 1968).

C. Caramanlian, K. A. Selby and G. T. Hill, "A Quintic Conforming
Plate Bending Triangle", to appear in Int. J. for Num. Methods in Engr.

Tsai, Chung-Ta, "Analysis of Plate Bending by the Quadratic Program-
ming Appraoch', Doctoral Dissertation, Washington University, -St. Louis,
Missouri (1971).

G. Hall and J. M. Watt, Modern Numerical Methods for Ordinaryvy Differantial

Equations Clarendoan Press, Oxrford, 1976.
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TABLE 2

Comparison of Strain Znergy Approximacions
for Various Polynomial Orders and Mesh Divisions
Wich and Without the Inclusion of Singularity Mode
Strain Energy
PR e B gy, e
2.9582796 8.356 2.98135737 7.634
2.9778692 7.749  2.9909923 7.342
2.9876714 7.445  2.9957897 7.194
3.0809992 4.554  3.0978153  4.03¢9
3.0961462 4.085  3.105022 3.810
3.11254021 3.581  3.1172042 3.432
3.1391180 2.753 3.1503687 2.405
3.1488200 2.453 3.1547416 2.
3.1603298 2.096 3.163%274 1.
3.1683829 1.847 3.1761374 1.607
31731463 1.838  3.27918317 1.313
3.1826309 1.405 3.1848030 1.338
3.1850978 1.329 3.1907447  1.154
3.1899564 1.179 3.1928865 1.088
3.19554128 L1001 J.19713€65 0.95§

Q

b

ro

6
9

e

~4

o &
O W O W P O W 3 O W p O w p

*Singularity function is included ia the elements
meeting at the crack tip.
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TABLE 3

Comparison of Strain Energy Release Rate Approximations
for Various Polynomial Orders and Mesh Divisiouns
With and Withqut the Inclusion of Siangularity Mode

Strain Energy Ralease Rate

PR weh ERT el ED
A 2.2735840 18.510 2.3195306 16.862
2 B 2.3548444 15,597 2.3668902 15.165
(o 2.3926472 14,242 2.4012298 13.934
A 2.5083682 10.094 2.5375678 9.048
3 3 2.5660932 8.025 2.5726580 7.790
c 2.5995090 6.823 2.6035822 6.682
A 2.620622 6.071 2.6405090 5.358
4 B 2.6592740 4.686 2.6636310 4.529
c 2.6830336 3.834 2.6859452 3.729
A 2.6752748 4.112 2.6883928 3.642
3 B 2.7015856 3.169 2.7041712 3.076
C 2.7184304 2.565 2.7203946 2.495
A 2.7074112 2.960 2.7170000 2.616
] 3 2.7262540 2,285 2.7282638 2.213
c 2.7391374 1.823 2.7405716 3.712

*Singularity function is included in the elements
aeecing at the crack tip
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TABLE 4

Ccmparison of the Crack Openiag Displacements (COD)
for Various Polymomial Orders
With and Without the Inclusion of Singularity Modes

X/a, the iiscasce along tha crack surface fTom e ceatar of the crack

3.9 3.5 Q.2 Q.3 2.4 Q.3 2.3 Q.7 2.3

0.+323  2.4360  )0.43%3  2..819 0.:362 0.4128 0.3377  2.2389 0.2030

0.3063 0.5300 0.35232 Q.3079% 0.4792  0.4362  0Q.37%4  0.30%9 0Q.2i37
.5 «.3 3.3 5.3 9.3 3.2 3.3 3.9 7.7

0.38328 J.;lc6 0.307¢  0.3308 0.5632 0.3288 0..715 0.39%% Q.23

Q.3e=3 0.5306 Q.5178 0Q.30640 0.3314 0.3480 0.4925 0..153 0.3

1.3 L.8 1.3 1.9 3.8 .. 3.3 3.3

L
"

2.84799  0.449¢  2.3322 0.8304 0.5016 0.34%0  2.3211  Q.4321 Q.3
0.3365 J2.8771  Q0.a83589 0.8383 0.s8101 0.5779  0.5337  0..4683 0.3639

.9 1.4

"
“
-
<
"
L}
'S
“
e
.
.
n
.
o

.8910  Q.3d43  Q.57IT  Q.4327  Q.8237  J.588%  2.3)37 Q.97 JLaan
J.53%9 0.3439 0.5784  0.4%31 0.3231 0.3906 0.3e31 0..363 0.3388
.7 Q.7 Q.3 2.3 9.7 9.7 1.3 L9 3.3
2.3978  2.3923  D.3300 0.5623  0.83839 0.398)  2.3430  0..363 0.:018
2.7213  2.3938  0.:3836  0.%60e  0.8eCe  0.3019 0.5520 Q.31 Q..
3.3 3.5 2.3 2.3 9.7 9.8 2.3 2.9 .3
1,712 0.5383  0.3366  0.3667  2.360)  J.304d4  2.5%5%6  J..323 2,091
2.7939 2.73064 2.3d91 0.4691 2,343 2.5084 0.3390  Q..363  0..139
2. d.e d.4 2.4 Q.3 2.3 2.8 0.3 1.2

willout siagularicy fumctiouns
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Q..538
0.:7%0

Q.2061

0.2.93
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TABLE 5

SHAPE FUNCTIONS FOR FIFTH ORDER Cl ELEMENT
CONTAINING CORRECTIVE RATIONAL FUNCTIONS

3
£2_£2
e e
3 :2
3
' - &
o B TR
{
3 4]
a
NODAL VARIABLE SHAPE FUNCTICN
S
) My =B LpL
33 3n - - 2 1
5
2
3w . : .4 X 1
S ( 1) N ol 8 -(1‘L)“l
33§ 3y TR,
6 oty b
%
¥y n, = a2? 2.y - A
332 1l g T (1= 3 i :uz)w,o
- .
1
* 2(l-uz)n:
2 2
: (NZO - & I.: L3)
3w - O
21 N, = 2 Lo(l-L.)e2N 6N "7
e, . ot T ects s Jee |
w " A ,2 - - -~
: - .372.“) VJ - -1 u:(l LJ)"‘NSPGNs
s 3 "
w(l) Nl = 4 OJ(NZONJ)-O(N4¢N5¢N6)
2 L '
?:3,5(1) " :.1 zr. .
3 *
2 3 CORRKRECTIVE
2 : RATIONAL
Sl L 22 FUNCTIONS
To e T B
2 Lz - LJ

e i e i — “‘*



CENTRAL DEFLECTION

CENTRAL BENDING
MOMENTS

4

L
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2
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m‘u /¢

KX

o

[ 5]

o

P/Q

P/Q

o 'y

g

N O
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TABLE 6

SIMPLY SUPPORTED SQUARE PLATE
UNIFORM LOAD

(Sth order Approximation)

Constraint
ethod Cowper Caramanlian
4.060210 4.0699374 4.060236
4.059696 4.0684849 4.069917
4.062342 4.062347 4.062323
4.062483 4.0627265 4.06250
4.0623498 4.0623517
4.0623503 4.0623398
4.0623522 4.0623524
EXACT SOLUTION: 4.0623527
Constraiat
Method Cowper Caramanlian
4.63094 4.70261 4.6579
4.84074 4.81530 4.8568
4.78697 4.78259 4.7816
4.79074 4.79083 4.7924
4.787436 4.787621
4.789028 4.788972
4.788329 4.788419

EXACT SOLUTION:

4.778683

Tsai
4.0597

4.0628

Tsai

4 bR
<. -

4.8338




&~

P/Q

v L v o ‘g

~

Cowper
8.5099612
8.4776356
8.5124403
8.5113962
8.5125386
8.5124190

8.5125496

TABLE 6 (continued)

STRAIN ENERGY

10* UD/q°L6

Constraint
~ Error Method
3.04x1072 8.5117189
4.10x1072 8.5124819
1.32x1073 8.5125393
1.36x10"> 8.5155227
1.64x10"% 8.5125514
1.57x107° 8.5125501
3.52x107° 8.5125524

EXACTION SOLUTION: 8.51253526

% Ervor

9.79x10" >

8.31x107%
1.56x10”%

3.51x107%

1.41x107°

2.94x10"°

6

2.35x10°
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LIST OF PROFESSIONAL PERSONNEL ASSOCIATED WITH THE

RESEARCH EFFORT

I. Norman Katz, Professor of Applied Mathematics and
Systems Science, Washington University, St. Louis, MO 63130.

Barna A. Szabo, A. P. Greensfelder Professor of Civil
Engineering, Washington University, St. Louis, MO 63130.

Mark P. Rossow, Associate Professor of Civil Engineering,
Washington University, St. Louis, MO 63130.

Mai Sen Chang, Graduate Student, Department of Systems Science
and Mathematics, Washington University, St. Louis, MO 63130.

Anil K. Mehta, Graduate Student, Department of Civil
Engineering, Washington University, St. Louis, MO 63130.
(D.Sc May 1978, Thesis Title: '"p-convergent finite
element approximation in linear elastic fracture mechanics')
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INTERACTIONS

On October 19, 1977, the Principal Investigator, I.
Norman Katz, presented an invited talk at the Expository
Seminar Series of the Applied Mathematics Division of the
U.S. National Bureau of Standards in Gaithersburg, MD. An
abstract of the talk, based on current research, is enclosed.




Natioral 3ureau of Standards
Appliad Mathezacics Division

Expostitorv Seminar Serias

QCTORER MEETING

Daca & Tine: Wednesday, Occober 19, 1977 ——= 11:00 A
(Coffae Social ~——=——= 10:45 A

eaie |

M)

Placa: Tachnology Building, Room 327
Naticnal 3ureau of Standards
Gaithersburg, Maryland 20760

Soeakar: Professor I. Normam Racz
: Departzeant of Sysctams Scienca and Mathematics
Washington Universi:ty
Sc. Louis, Mssouri

Ticle of Talk: "The Constraiac Machod for Finita Zlement Strass Analysis"
Abstrace: Ia conventional approaches to finite element scr2ss analysis

accuracy 1s obcained by fixing cthe degr=e p of tha approxizat-
iag polynomial and by allowing che zmaxizum diameter h of ele-
nents in the triangulation to approach z=ro. An altarnates

s approach is to fix the triangularion and to {ncra=ase the degrzes
of approxizating polynomials in those elemencs where more accuracy
is required. In order to implament the second approach efficiantly
it i3 necessary to have a family of finica elaments of arbitrary
bolynomial degree p with the property thac as =uch {anformation
as possidle can be recained from the i3 degrae approximation when
cemputiag the (p+l)st degree approxizacion. Such a AIZRARCHIC
family has beea formulatad with p > 2 for problems i{n plane
stress analysis and with p > 5 Ior problems in place dending.
The family (s describded and numerical exaxplas are presencad which
1lluscrata the afficiency of the new xzethod.

i 3 ?rofassor Xacz received his Ph.D. {a Macthematics frca M.I.T. in
1959. He has worked at AVCO/Research and Advanced Developmenc
{n Wilaingron, Massachusetts where he bYecame Manager of che Mache-
=atics Departzenc. Since 1967 he hag bdesn ar Washington Universicy
{3 St. Louis. His research has been in aucerical analysis, ordinar
and partial diffarencial equacicnsg, {ianita alezent =acthods, opti=zal
facility locacion and biomathemacics,

All {atarasctad are invitad to attend.

USCOMM-NBS-2C




